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Abstract: Surface roughness is one of the fundamental quantitative parameters of digital terrain analysis
(DTA). The development of computer systems over recent decades has led to the development and successful
implementation of various digital analysis methods. An important place among them is undoubtedly the digital
fractal analysis. Along with this, the ever-improving digital elevation models (DEMs) of the Moon's topography
provide new opportunities in this direction. Present study focuses on differences in the topography of lunar poles
based on the digital fractal approach. For this purpose, the real physical surface of the Moon's poles is
represented as "fractal surface", and the differences in hypsometry and surface roughness are described by
fractal dimension. The results obtained on this basis showed a different geological history of the lunar poles. This
requires a thorough further interpretation.
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Pestome: panasocmma Ha penegha e eOuH om pyHOaMeHmarnHume KadyecmeeHuU rnapamempu Ha
OueumanHusi aHanu3 Ha penega (HAP). Passumuemo Ha KOMMAOMBbPHUME cucmemMu npe3 rocrnedHume
Oecemunemusi dogede G0 passusaHemo U yCcriewHomo eHedpsisaHe Ha pasfuyHu OuesumarnHu mMemodu 3a
aHanu3. BaxHo msicmo cped msx 6e3 CbMHeHue uma OuaumarsiHusi ¢hpakmarsneH aHanu3. Haped c¢ mosa,
HernpekbcHamo nodobpsisawume ce yugpposu modenu Ha penegpa (UMP) sa monoepachusma Ha JlyHama
npedocmassim HOBU 8Bb3MOXHOCMU 8 ma3su rocoka. Hacmosiwomo u3cnedsaHe ce oKycupa 8bpxy
pasnudusima 8 mornoepaghusima Ha yHHuUme rnosocu 6asupalku ce duaumarHus ¢ppakmareH rnodxod. 3a masu
uesn, ¢husuyeckama rno8bPXHOCM Ha JIyHHUmMe MoJsiocu e npedcmaseHa Kkamo ,gpakmarHa noebpxHUHa”, a
pasnuyusima 8 xuricomempusima U eparnasocmma Ha perniecha ca onucaHu 4pe3 chpakmanHa OUMEeHCUS.
lMonydyeHume pe3ynmamu Ha ma3su OCHO8a oKa3gam pasfiudHa 2e0/10XKa UCmopusi Ha JlyHHUme nosrocu. Tosa
Hanaesa 0onmb/IHUMEIHa UHmMeprnpemauyusi.

Introduction

Over the last decades, the increasingly use of fractal analysis on the one hand and the
continuous improvement of digital elevation models (DEMs) have led to the introduction of an
innovative methodological approach. The cohesive, but unambiguous, use of fractals and DEMs gave
to the scientific community new possibilities for analysis and interpretation of the terrain. The fractal
approach is based on the observation that the morphology of surfaces is statistically self-affine, which
implies that when repeatedly magnified, increasing details of roughness emerge and appear similar to
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the original profile (Taud and Parrot, 2009). With the fractal approach, it is possible to calculate the
scale-independent parameters which describe the surface. The fractal measure parameter, i.e. fractal
dimension (D), is a well-known measure unit of surface roughness (Mandelbrot, 1982; Pentland, 1984;
Franceschetti et al., 2000; Pant et al., 2010; Sun et al., 2006) and represents the capacity of the
surface to fill in the adjacent volume (Zahouani et al., 1998). Fractal dimension (FD) has many
applications in remote sensing research including image processing, image analysis, texture
segmentation, shape classification and identifying the image features such as roughness and
smoothness (Nayak and Mishra, 2016).

In recent years, the "fractal approach" has been increasingly applied to the surface of Earth's
natural satellite - the Moon. Using fractal analysis, spatial variations and peculiarities of the Moon's
topography (Turcotte, 1987; Nefedjev, 2003; Baldassarri et al., 2008; Huang et al., 2009; Rosenburg
et al, 2011; Cao et al., 2015; Bray et al., 2017) have been successfully analyzed. Also from the
position of the fractals was analyzed and interpreted the Moon's gravity field and its relation to the
terrain (Kumar et al., 2016; Ranguelov et al., 2019).

The present study focuses on spatial differences in elevation and surface roughness of the
lunar poles. Differences in topography of the poles are analyzed and interpreted by constructing of 2D
fractal models (surfaces) based on high resolution DEM data (30x30 meters) from the Lunar Orbiter
Laser Altimeter (LOLA) (Smith et al., 2011). The results obtained in the course of the study showed
significant differences between lunar poles regarding of topography and its roughness. Unlike other
large planetary bodies in the inner solar system, the lunar South Pole's topography is is largely
redesigned from free space objects. This requires the need for further interpretation.

Methods and Data
Variogram method for fractal dimension estimation

There are many techniques to estimate the fractal dimension. In the present study the fractal
dimension is calculated using Focal Fractal Dimension Calculator (FocalD) based on the ,Variogram
method” (Mark and Aronson, 1984). The software calculates a surface of fractal dimension values in a
window around each raster cell. The pixel signal value in each fractal image reflects the complexity of
the variation in the topography. The result is an entire raster map (2D) of fractal dimension values
indicating how data changes over space. The fractal estimator (Jaggi et al., 1993) measures fractal
dimension (D) based on the variogram computed for the study area, and
Q) y(h)= Var (Zi-Zj)
where i; j are spaced by the distance vector h.

The fractal dimension (D) can be derived by regressing the logarithm of the distance vector
with the logarithm of the variance (Zhou and Lam, 2005), and
) D=3-(B/2)
where D is fractal dimension and B is the slope of the regression.

The fractal signal value is much higher, when the DEM values have a more complex variation.
For example, fractal dimension of 2,0 is an indicator for smooth, scale invariant surface, while fractal
dimension of 3,0 is an indicator for a space-filling extremely rough surface (Table 1).

Table 1. Surface roughness classification based on fractal dimension (based on Mark and Aronson, 1984,
Pentland, 1984; with modifications)

Class Surface type Fractal
Dimension (FD)
1 Flat 2,0-2,1
2 Nearly flat 2,1-2,2
3 Slightly rough 2,2-2,3
4 Moderately rough 2,3-2,5
5 Highly rough 2,5-2,8
6 Extremely rough 2,8-3,0

Data and software

The digital elevation model (DEM) of the lunar poles using in the present study is based on
data from the Lunar Orbiter Laser Altimeter (LOLA) (Smith et al., 2011), an instrument on NASA’s
Lunar Reconnaissance Orbiter (LRO) spacecraft (Tooley et al., 2010). The DEM is generated in
Projected Coordinate System Moon 2000. The data are available in Georeferenced Tagged Image
File Format (GeoTIFF) at 30x30 m spatial resolution.
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The DEM data have been processed and explored using Geographic Information System
(GIS) - SAGA-GIS (Conrad et al., 2015), QGIS (Thiede et al., 2014) and LandSerf (Wood, 2009) free
software.

Results and Discussion

The results of the study are presented visually and textually in Fig. 1 and Table 2. The main
conclusions and interpretations are discussed further.
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Fig. 1. Lunar poles topography and corresponding 2D fractal surface

Table 2. Topography peculiarities of the lunar poles

North Pole
DEM min -10009 FD min 2,08
DEM max 5824 FD max 2,88
SD 4593 SD 0,306
R2 0,909 R2 0,739
South Pole
DEM min -15461 FD min 2,08
DEM max 13968 FD max 2,80
SD 8538 SD 0,209
R2 0,944 R2 0,733

The presented results show an interesting picture. In general, the terrain of the lunar poles is
characterized by a large amplitude regarding to the hypsometry. For the North Pole it is 15 833 m and
for the south one 29 429 m. The difference is also significant regarding to the maximum and minimum
absolute hypsometry values in favor of the southern lunar pole (Fig. 2). It is remarkable that both
Poles have approximately similar values of the FD and R2.
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Fig. 2. Lunar poles hypsometry variation

Differences, however, are observed in the spatial distribution of fractal values and related
parameters. The South Pole of the Moon (R? — 0.733) is characterized by a slightly nonlinear
distribution of the topography values in comparison of the northern one (R% — 0.739) (Table 2). In
general, based on fractal dimensions (Fig. 3, Table 3), the surface of both poles is characterized by
moderately-highly roughness. Within the North Pole, the areas with highly and extremely highly terrain
are more widespread (53,4 % > 31 % of total area or 184 124 kmZ difference). The flat areas are rare
as a whole, but more widespread within the South Pole (5,5 %>1,5% of total area or 31 190 km?2
difference). This proves that, compared to the northern pole, the terrain of the southern one is
transformed by geological processes with higher power but lower intensity.
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Fig. 3. Frequency of distribution of fractal dimensions within the lunar poles

Table 3. Surface roughness of the lunar poles

North Pole South Pole
Class Surface type Fractal Total area Relative Total area | Relative
Dimension (km?) share (%) (km?) share (%)
(FD)
1 Flat 2,0-2,1 5380 0,7 20532 2,5
2 Nearly flat 2,1-2,2 6600 0,8 24638 3,0
3 Slightly rough 2,2-2,3 28039 3,4 98554 12,0
5 Moderately 2,3-2,5 342544 41,7 422961 51,5
rough
6 Highly rough 2,5-2,8 366249 44,6 216818 26,4
7 Extremely rough 2,8-3,0 72472 8,8 37779 4.6
Conclusion

The results obtained confirmed the differences in the topography of the lunar poles. From one
side the both poles are dominated by the “moderate and highly rough” surfaces. (77.9% for the South
Pole and 82.3 % for the North). From the other side - the surface of the southern lunar pole is less
expressive but more variable, while within the northern one vice versa- more expressive and less
variable. This leads to the conclusion that, compared to the North Pole, the southern one has been
subjected to different by intensity and power impact events, which have created and shaped the
contemporary pattern of the relief. The fractal analysis clearly confirm that conclusions. This is in
contrary to the tendency, the northern hemispheres (and respectively, the poles) of the planetary
bodies within the inner solar system to be more vulnerable to collisions with large space objects. This
necessitates further in-depth research.
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